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ABSTRACT

Polynomial masking is a glitch-resistant and higher-order
masking scheme based upon Shamir’s secret sharing scheme
and multi-party computation protocols. Polynomial mask-
ing was first introduced at CHES 2011, while a 1%*-order
implementation of the AES S-box on FPGA was presented
at CHES 2013. In this latter work, the authors showed a
2"d_order univariate leakage by side-channel collision anal-
ysis on a tuned measurement setup. This negative result
motivates the need to evaluate the performance, area-costs,
and security margins of combined shuffled and higher-order
polynomially masking schemes to counteract trivial univari-
ate leakages. In this work, we provide the following contribu-
tions: first, we introduce additional principles for the selec-
tion of efficient addition chains, which allow for more com-
pact and faster implementations of cryptographic S-boxes.
Our 1%%-order AES S-box implementation requires approxi-
mately 27% less registers, 20% less clock cycles, and 5% less
random bits than the CHES 2013 implementation. Then,
we propose a lightweight shuffling countermeasure, which
inherently applies to polynomial masking schemes and ef-
fectively enhances their univariate security at negligible area
expenses. Finally, we present the design of a combined shuf-
fled and higher-order polynomially masked AES S-box in
hardware, while providing ASIC synthesis and side-channel
analysis results in the Electro-Magnetic (EM) domain.
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1. INTRODUCTION

With the widespread adoption of pocket-sized embedded
devices which can easily fall into the adversary’s hands,
like banking and Pay-TV smart cards, passport ICs, and
RFID transportation cards, the security of cryptographic de-
vices does not only depend on the cryptographic strengths
of mathematical algorithms, but also, and mainly, on the
physical security of their implementations. In the last two
decades, several side-channel analysis techniques have been
developed to recover the secret keys stored in cryptographic
devices. In parallel, a large body of countermeasures have
been proposed to thwart side-channel attacks at different
levels of abstraction (mainly at the logic [20, 16], algorith-
mic [7, 19, 22], and protocol levels [15, 1, 11]), but no con-
clusive nor satisfactory “costs vs. performance vs. security
trade-off” has been achieved yet. In practice, one of the
most effective ways of protecting block-cipher implementa-
tions against side-channel analysis is to employ higher-order
masking schemes. The basic idea of higher-order masking
schemes is to split the computation of secret-dependent in-
termediate values into multiple shares, as to increase the
adversary’s data complexity exponentially to the number of
shares [6, 21]. In the last years, a number of higher-order
masking schemes have been proposed in literature along with
statements of provable security. Nevertheless, they turned
out to be susceptible to side-channel attacks in many occa-
sions, e.g. because of oversimplified modeling assumptions
like in the case of glitches [14]. Nowadays, the two most
promising approaches to glitch-resistant and higher-order
masking schemes are threshold implementations (TI) [19,
4, 3, 9] and polynomial masking schemes [22, 24, 17, 10].
While TI are normally faster and more compact than poly-
nomial masking schemes, these latter still offer some ad-
vantages over the former: (1) while TI typically require an
ad-hoc re-design for each block cipher and/or masking or-
der, polynomial masking schemes can be easily adapted to
any block-cipher and inherently scaled to any masking or-
der using regular structures e.g., hardware modules can be
parametrized to any order using VHDL’s GENERICS and
synthesized only to that masking order required for a spe-
cific certification; (2) in a standard setting, polynomially
masking schemes offer more security than TI, as they pro-
cess one share per clock cycle, hence requiring the adversary
to estimate the leakage distribution over more dimensions.



Related Work.

Polynomial masking was introduced at CHES 2011 [22],
while a 1%*-order AES S-box implementation on FPGA was
presented at CHES 2013 [17]. In this latter work, the au-
thors showed a 2"?-order univariate leakage in the AES
S-box, obtained by clocking the target device at moderately
high frequencies and using active probe pre-amplifiers for
measurements in the power domain. It is important to notice
that these type of attacks strongly depend on the measure-
ment setup and do not undermine the security of polynomial
masking schemes specifically, but represent a general threat
for all masking schemes, including higher-order TI.

Contribution.

In this work, we improve the CHES 2013 implementation
along three directions: (1) we introduce new principles for
the selection of more efficient addition chains in the form
a; = a;—1 + ar, which allow for more efficient S-box im-
plementations; (2) we propose a lightweight shuffling coun-
termeasure, which inherently applies to polynomial mask-
ing schemes, i.e. it is agnostic of the underlying block-
cipher and can be deployed for both hardware and software
higher-order masking implementations; (3) we present the
design of a shuffled and higher-order polynomially masked
AES S-box in hardware, while providing ASIC synthesis
(up to the 6"-order) and side-channel analysis (up to the
2"%_order) results in the Electro-Magnetic (EM) domain.
Our side-channel analysis confirms the presence of univari-
ate 2"-order leakage in the EM domain, i.e. the leakage
is independent of the load at measuring point on the target
device. Also, it shows that shuffled 1%*-order and 2"?-order
AES S-box implementations resist to univariate attacks up
to 10,000,000 measurements in a worst-case scenario analy-
sis, although the former is 40% faster and 69% smaller than
the latter. This result highlights the practical relevance of
shuffling to #mprove the resistance of 1°*-order implementa-
tions against univariate attacks. Note that the possibility
of easily combining shuffling and masking countermeasures
at almost no additional costs (where the shuffling is applied
“within” the masking itself) should be considered as a yet
compelling advantage of polynomial schemes over TI.

2. BACKGROUND

In the following, background information about the AES
S-box and higher-order polynomial masking is provided.

2.1 The AES S-box

The AES S-box is defined as the composition of two oper-
ations: an inversion in the binary extension field GF(2°%) ~
Folz]/(2® + 2* + 2® + 2 + 1) followed by an affine trans-
formation in the binary field GF(2). Using the Lagrange
interpolation formula, the AES S-box S(v) can be rewritten
as the composition of GF(2®) operations only:

8
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where (dx)o<k<s are the coefficients defined by the vector
(0x63, 0x05, 0x09, 0xF9, 0x25, 0xF4, 0x01, 0xB5, 0x8F), cf. [8].

2.2 Higher-Order Polynomial Masking

A d*"-order masking scheme splits key-dependent interme-
diate values into m shares, such that no subset of the shares
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with cardinality d < m depends on the original secrets. A
d"-order masking scheme can be defeated by (d+41)""-order
side-channel by exploiting, e.g. the leakage of (d+ 1) shares
combined together or the (d+ 1) statistical moment of the
leakage distribution.

Polynomial masking is a d**-order masking scheme based
upon the Shamir’s secret sharing scheme and Multi-Party
Computation (MPC) protocols [25, 2, 22, 24]. Polynomial
masking schemes are particularly suitable to protect the im-
plementation of cryptographic algorithms defined over finite
fields, e.g. GF(2%). Let © € GF(2") be a secret intermediate
value, P, (V) =z + Z;l:l ;Y7 be its associated polynomial
obtained by drawing d coefficients (r;)1<j<a <° GF(2") at
random, and (oi)i<i<m <8 GF(2™)* be m public random
elements such that Vi, j € [1,m], a; # a;. The secret shares
(zi)1<i<m of x are obtained by evaluating P, at (a:)i1<i<m:

d
Zs :a;-i-eraf, i € [1,m].
j=1

2)

Once the shares are created, then the addition of two se-
crets z = x+y can be performed independently on the single
shares without the need of fresh randomness, such that:

d
zi = (i +yi) + Z(7'j +rh)ad, i€ [1,m],

j=1

®3)

where P, (Y) = = + E?Zl r;YI, P(Z) = y + 25:1 iz
Similarly, the multiplication of a secret by a constant value
z = cx, ¢ # 0 can be applied to the single shares without
requiring fresh randomness:

d
2 = (cx;) + Z(crj)a{, i € [1,m],

=1

(4)

On the contrary, the multiplication of two secrets z = zy
can not be performed in a straightforward way for two rea-
sons: (1) the result of the multiplication of two polynomials
is a polynomial of degree 2d; (2) its coefficients are not ran-
domly distributed. The Ben-Or, Goldwasser and Wigderson
multiplication method solves these two issues by performing
the multiplication of two secrets in three steps [2]:

Step 1) ¢ = xiy; _
Step 2) qix = ti+ E?:l S]‘Ozi , i,k e€[l,m]. (5)
Step 3) Zi = Z:l Q'w,i>\w

First, the initial shares are multiplied in a straightforward
way (Step 1). Then, the resulting shares (¢;)1<i<m are re-
shared using d fresh randomly generated masks (s;)i1<j<d
(Step 2). Finally, a correct sharing of z = xy is obtained
from the (A\i)1<i<m coeflicients laying on the first row of the
inverse Vandermonde matrix (a)i<i j<m (Step 3):

I .=
o — o
= 3
Similarly, the reconstruction of a secret x from its shares

(zi)1<i<m is obtained using Lagrange’s interpolation formu-
las, as follows:

(6)

i=1



3. MORE EFFICIENT ADDITION CHAINS

This section introduces new principles for the selection of
more efficient addition chains, which lead to more compact
and faster implementations of cryptographic S-boxes.

An addition chain for a positive integer ¢ is a sequence of
positive integers (ap = 1,...,a; = ¢), such that for every
1 < ¢ </, there exist 0 < j,k < i and a; = a; + ax, where
£ is the length of the chain. Addition chains can be used
to implement fast exponentiations z?, for large ¢. In this
case, every addition corresponds to a multiplication and ev-
ery doubling corresponds to a squaring operation. Addition
chains in the form a; = a;—1 + ax are particularly suitable
for compact hardware implementations, as the operand a;_1
is directly available from the previous computation step and
it does not have to be stored. These type of addition chains
are called star chains [5].

In order to enable efficient computations, the shortest ad-
dition chains for ¢ which maximize the number of doublings,
i.e. a; = 2a;_1, are typically used. In recent works, the
AES inversion 27! = z%* € GF(2®) was implemented us-
ing the addition chain C2% = (1,2,3,6,12,15,30, 60, 120,
240, 252,254) [23, 13, 17], i.e.:
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The addition chain Cf;?é requires a total of 11 steps, of which
7 are squaring operations and 4 are multiplications. How-
ever, it can be noted that using Cf,?g‘l requires the storage of
at least 3 intermediate values, namely z%, z*, and z'?, and
does not generate any intermediate value that can be useful
for subsequent computations, e.g. the affine transformation
in the AES algorithm. Hence, we introduce the following
two principles to improve the selection of addition chains
along two directions:

PRINCIPLE 1. Select those addition chains which generate
intermediate values that can be useful for subsequent opera-
tions within the considered cryptographic algorithm.

PRINCIPLE 2. Select those addition chains which mini-
mize the number of intermediate values that must be saved
for exponentiation.

Clearly, those addition chains fulfilling Principle 1 and
Principle 2 provide two additional benefits, which are ad-
vantageous for efficient implementations: they allow for an
overall speed-up of the cryptographic implementation, by
computing values which are needed in successive operations
(Principle 1), and for a minimization of the storage required
to save intermediate values of exponentiations (Principle 2).
Note that, while Principle 1 is algorithm specific, Principle 2
is generally valid and of independent interest.

In order to find star chains for AES, which fulfill Prin-
ciple 1 and Principle 2, we used a naive exhaustive search
algorithm to test all the addition chains in the form a; =
ai—1 + ar up to a given length ¢ (cf. Algorithm 1). The
algorithm runs in O(£!) and proceeds by constructing a tree
of all possible addition chains of length ¢, recursively.

By running Algorithm 1, we found |S| = 6966 addition
chains for (¢ = 254, ¢ = 11), of which 754 were using 7 squar-
ing and 4 multiplications, of which 106 required storage of
only one single intermediate value, of which 55 also gener-
ated the value 127, that can be used during the AES affine
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Algorithm 1 Exhaustive Search for Star Chains.
Input: ¢ >0,£>0,C=(a0=1,...,ar).
Output: S ={(ao=1,...,a,):V0<7r <Y, ar = q}.

1: procedure FINDCHAIN(q, ¢,C)

2 if a, = q then

3 SAVE(C) {C: (ao = 1,,..,(11«3@ :q)}
4 else if r < ¢ then

5: for k=0 to r do

6: C « (ag,...,ar,ar+1 = ar + ax)

T FINDCHAIN(q, ¢,C)

8 end for

9 end if

10:

end procedure

transformation. Out of S, we choose (arbitrarily) the addi-

tion chain C25¢ = (1,2,4,8,9,18, 36,54,108,126, 127, 254),
ie.:
X ﬁ .TS M) £E9 2—§ $36 M) 1‘54 i :EIDS ﬂ :El% ﬂ 52127 i :D254.

The addition chain C2 has the following properties: (1)
it consists of 11 steps, of which 7 are squaring operations
and 4 are multiplications; (2) it produces the value 21?7,
which can be used by the AES affine transformation, and
it requires only one intermediate value to be stored, namely
x'®. Hence, using C22} in place of Cf,?g‘l leads to faster and
more compact AES S-box implementations: (1) the affine
transformation results 1/7 faster, as one squaring operation
can be skipped; (2) the inversion results 1/3 smaller, as only
one intermediate value has to be stored (instead of three').

Similarly, we searched for star chains for (¢ = 14, £ = 5),
which can be useful for efficient implementations of AES in
tower fields, i.e. GF((2%)?), where the inversion z ! = z** €
GF(2%) is used. In previous works, the following addition
chain Cji; = (1,2,3,6,12,14) was used [13]:

2 M

328 12 M 14

e 3 Szt =

The addition chain C(}r?g requires 5 steps consisting of 3 squar-
ing and 2 multiplication operations. However, it requires to
store the intermediate value x® to compute z'4.

By running Algorithm 1, we found 14 star chains for
(g = 14,¢ = 5), of which 8 were using 3 squaring and 2
multiplications, of which only 1 addition chain did not re-
quire the storage of any intermediate value, namely Ci2, =
(1,2,3,6,7,14):

S, 14

S 2M 3 S 6M 7
r—x - - —Tr —T

4. HARDWARE DESIGN

This section details the hardware design to shuffle a poly-
nomially masked AES S-box for any order d = (m — 1)/2.
The design has an 8-bit interface, implements a single S-box
instance, and consists essentially of three modules: (1) the
shared multiplication module (shamul), which performs the

'Note that, despite this rather small improvement, the area
saving of hardware implementations might be significant
when addition chains are instantiated multiple times, e.g.
this is the case for higher-order polynomial masking schemes.
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Figure 2: 2"%-Order remask Module (i'" Share).

multiplication of two shared secrets; (2) the shared mul-
tiplication by a constant and addition module (shamac),
which performs the multiplication of a secret by a constant
value followed by a secret addition; (3) the shuffling module
(shuffle), which generates random permutations from the
symmetric group Sy, to shuffle the activation order of the m
secret shares within every other shared module. The pro-
cessing of the shared S-box using the more efficient addition

chain 25} is illustrated in Figure 1.

4.1 The shamul Module

The shared multiplication module (shamul) is used to per-
form the inversion defined by C25% and to iterate the squaring
operations as needed by the affine transformation in GF(2%),
cf. Equation (1). It basically implements the multiplication
of two shared secrets according to Equation (5) using three
submodules: the re-masking module (remask), as illustrated
in Figure 2 for the case (d,m) = (2,5), the reconstruction
module (recon) and a GF(2®) multiplier, as illustrated in
Figure 3 for the case (d, m) = (2,5). These modules are im-
plemented m times within the shamul module, one for each
share 1 < i < m. The first step of the shared multiplica-
tion is performed by the m x GF(2%) multipliers instantiated
in the shamul module. The second step is implemented by
the m remask modules, each one instantiating m x d GF(2%)
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Figure 3: 2"%-Order recon Module (i'* Share).

multipliers and m x d GF(2®) adders. This step requires
d x 8-bit of freshly generated random masks (s;)i1<j<q for
each share. Finally, the third step is implemented by the
mx recon modules, each one instantiating m x GF(2%) mul-
tipliers and (m — 1) x GF(2®) adders. Note that each one of
the recon modules are additionally equipped with m x 8-bit
DFF registers to block the glitches, arising from the differ-
ent remask modules, joining together in the combinational
paths, as well as 2 x 8-bit DFF registers for storing the in-
termediate results of the inversion. Due to the usage of our
selected addition chain C23!, the total number of DFFs in
the circuit is reduced from m x 40 to m x 16, when compared
to [17]. For the same reason, also the size of the multiplex-
ers (MUXes) selecting the input shares (2, ;) to the GF(2®%)
multipliers results significantly reduced in practice. Finally,
note that the switching activity of all MUXes in the design
is clocked using “DFF's with Enable” as to avoid glitches on
the select lines [17].

The shamul takes a total of 2 x m clock cycles to perform
the multiplication of two secrets and works as follows: in the
first m clock cycles, the signals selm; for ¢ € [1, m] select the
proper inputs (where v; represents the i*" input share of the
S-box) to the GF(2®) multipliers performing t; = ;y; and
the enable signals em; for ¢ € [1,m] are asserted to perform
the first two steps of the shared multiplication. The results
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are stored in the registers q; ; for 4,j € [1,m]. Then, during
the next m clock cycles, the enable signals emy:; are asserted
to finalize the shared multiplication. Note that the enable
signals es18; are activated only in the step in which the
shared z'® value is computed. The output of the shamul
are the shares w; for ¢ € [1, m] which are sent to the shamac
module.

4.2 The shamac Module

The shamac module performs the shared multiplication
by a constant followed by a shared addition according to
Equation (4) and Equation (3), respectively. These op-
erations do not require fresh randomness and can be per-
formed independently on the individual shares, thus requir-
ing only m clock cycles to be performed. The shamac is
used during the affine transformation, but it can be ex-
tended straightforwardly to support e.g. the initial sharing
of the plaintext and key bytes, the initial AddRoundkey, and
the MixColumns+AddRoundkey operations. One share of the
shamac module is illustrated in Figure 4. Each share deploys
1 x GF(2®) multiplier, 1 x GF(2®) adder and 2 x 8-bit DFF
registers. The affine transformation uses the shamac module
as follows: at the beginning the sel; selects the constant
0x63 from the MUX2;, while the signal selconst selects the
constant 0x8F from the MUX1 (common to all shares). Hence,
the enable signal ea; is asserted and the result is stored in
the register right below the adder. Finally, the MUX2; chooses
the loop back input to continue the affine transformation us-
ing the constants (0x05, 0x09, 0xF9, 0x25, 0xF4, 0x01, 0xB5)
selected by the signal selconst on the MUX1. Note that, in
contrast to [17], we allow both the shamul and the shamac to
be active at the same time during the affine transformation.
This allows to save 7xm clock cycles per S-box computation,
while not having any apparent impact on the side-channel
security of the implementation (cf. Section 5).

4.3 The shuffie Module

Polynomially masking works by activating the secret shares
individually, one after the other, such that only one secret
share is active per clock cycle. For instance, the it" share
of the shamac module is activated when the m-bit enable
signal ea; is set to logic ‘1’. This value is generated e.g.
by a [log, m]-bit counter, which is incremented every clock
cycle and set to zero every m clock cycles. However, since
there are no strict requirements on the activation order of
the secret shares, they can be activated in a random or-
der at each secret computation, e.g. generating a random
permutation from the symmetric group S, every m clock
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cycles. This acts as a shuffling countermeasure (within the
masking scheme), which can be used to enhance the side-
channel security of polynomial masking without penalties
on the running time.

One simple way to create random permutations is to use
the Fisher-Yates-Durstenfeld (FYD) algorithm, e.g. in for-
ward direction [12]. However, as the number of shares m =
2d 4+ 1 is not a power of two, random permutations can
be approximated using a slightly modified FYD algorithm,
as shown in Algorithm 2. This variant basically generates
only the values [0,m — w] for w € {1,...,m — 1} using a
modulo operation. The shuffle modules implements Al-
gorithm 2 cascading a bunch of multiplexers, as illustrated
in Figure 5. The shuffle module requires m — 1 stages, in
which (m+1—w) multiplexers with 208211 inputs are
deployed. In order to generate a random permutation, the
select signals sel,, takes a uniformly random value, which
permutes the current input (pi)1§i§m into a new permuta-
tion (7'i)1§i§m that gets stored into a register array con-
sisting of m x [log,(m)]-bit registers. The shuffle module
generates a new permutation (from the previous one) every
m clock cycles. The new permutation is then used to shuffle
the activation order of the shares within any other shared
module? during the next shared operation.

4.4 Performance Evaluation

We synthesized the design using Synopsys Design Com-
piler J-2014.09-SP3 targeting a TSMC 45 nm standard tech-
nology library (tcbn4bgsbwptc) at 1 MHz. Our gate equiva-

2Note that the shuffle module can be used “as it is” to
shuffle also the activation order of the shared key and state
arrays within the AES.



Algorithm 2 Modified FYD in Forward Direction.

Input: Input Permutation (pi, ..., pm)
Output: Output Permutation (r1,...,7m)
1: for w=1to m do
Aw < Pw
: end for
forw=1tom—1do
sel,, 8 [0’2(108‘2(m+1*wﬂ _ 1]
j < mod(sel,,m+1—w)
t <+ aw
Ay < Qj4w
9: Qjrw < T
: end for
11: for w =1 to m do
12: Tw ¢ Qu
13: end for

lent estimations are obtained using the smallest 2-to-1 NAND
gate available in the library (ND2DOBWP), whose area accounts
for 0.705600 pm?. We used the compile command without
the —ultra parameter to allow for a fair comparison of the
results with the literature (where not otherwise specified).
In this library, the GF(2®) multiplier and adder cost 280 GE
and 20 GE, respectively. Table 1 summarizes the synthesis
and performance results of our shuffled polynomially masked
AES S-box implementation for d € [1,6]. The number of
clock cycles and random bit have been obtained from the
formulas 35 x m and 17 X m X d, respectively. Note that,
while the number of clock cycles grows linearly in the mask-
ing order d, the number of random bytes as well as the area
are O(d?), being the size of the AES S-box dominated by the
shamul module, whose area and randomness requirements
grow quadratically in the masking order d.

S. EM FIELD SIDE-CHANNEL ANALYSIS

Electro-Magnetic (EM) field side-channel analysis is par-
ticularly relevant in those cases where modifying the target
device to insert a shunt resistor might permanently damage
it, or it would require time and expertise, e.g. unaccessible
contacts due to multi-layers PCB boards or ICs with mul-
tiple power and ground pins. In the context of polynomial
masking schemes, EM analysis becomes also particularly in-
teresting in order to verify whether the 2"?-order univariate
leakage exhibited in [17] can also be exploited in the EM
domain, i.e. it is not caused by the load at the measure-
ment point on the target device. We synthesized the design
using Xilinx ISE Webpack version 14.7 targeting a Xilinx
Spartan-6 FPGA (xc6s1x9-2-ftg256). We used an Agilent
DS09254A 2.5 GHz digital oscilloscope with a 10 mm diam-
eter magnetic field probe connected to a 30 dB pre-amplifier
(namely, RF-R 50-1 and PA303 from Langer EMV-Technik)
to emulate the worst-case scenario analysis presented in [17].
However, differently from their work, we did not employ any
DC blocker, as our EM probe is active in the frequency range
30 MHz—3 GHz. The oscilloscope sampled at 100 MSa/s®
and we clocked our design at 4 MHz, resulting in 25 Sa/cycle
for all our experiments (where not otherwise specified). We
focused our analysis on the first two S-box operations and
applied 1°t- and 2"%-order side-channel correlation-collision

3We did not observe more leakages when sampling at higher
sampling rates.
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Table 1: AES S-box: Speed [Clock Cycles] vs. Ran-
dom [Bytes] vs. Area kGE]

d=1 d=2 d=3 d=4 d=5 d=6
Speed 105 175 245 315 385 455
Random 51 170 357 612 935 1326
Area 10.2 33.4 79.7 1578 276 442.7

attacks [18], while fixing the security level at 10,000,000
measurements (where not otherwise specified).

For the sake of evaluation, we fixed the public points
(@:)1<i<m and (A\;)1<i<m to (0x02, 0x03, 0x04) and (0x02,
0xD1, 0xD2) for d = 1 and to (0x02, 0x03, 0x04, 0x0A, 0x0B)
and (0x64, 0x94, 0xAE, 0x9F, 0xCO) for d = 2, respectively.
Note that, this is again a worst-case assumption, as the pub-
lic points are not required to be fixed in practice. Assuming
that the points are uniformly and independently drawn at
random, the probability that the adversary can observe the
same public points is H;l_ol ﬁ This means that it
would be much harder to mount successful attacks in prac-
tice, especially for d > 1, as the probability decreases quickly
with the masking order d.

For our side-channel investigations, we proceeded as fol-
lows: (1) we considered a 1°"-order implementation and
verified the existence of 1¥'-order univariate leakage, when
the masks are off; (2) we activated the PRNG to generate
the masks and confirm the existence of 2"?-order univariate
leakage in the EM domain; (3) we activated the shuffling
countermeasure to verify its effectiveness in 1°*-order im-
plementations; (4) we verified the security of a 2"%-order
implementation without shuffling.

We conclude that our 1%*-order implementation with shuf-
fling and our 2™¢-order implementation achieve univariate
1%t and 2"%-order security up to 10,000,000 traces in a
worst-case scenario analysis.

15*-Order Masking and PRNG Off.

As a sanity check, we verified the existence of 1°*-order
univariate leakage in our 1¥*-order implementation, when all
masks are set to zero. The results are reported in Figure 8,
which clearly shows how the EM activity of the two S-boxes
perfectly correlates over time, when the masks are off. This
analysis was conducted with only 1,000,000 measurements.

15¢-Order Masking, PRNG On and Shuffling Off.

The results of the analysis of the 1%%- and 2"?-order uni-
variate leakage, when the shuffling countermeasure is deac-
tivated, is reported in Figure 6. Even though the shamul
and shamac module are active at the same time, no leakage
can be observed in the 1°‘-order moment. However, a sig-
nificant leakage can be observed in the 2"?-order moment
during both the inversion and the affine transformation. In-
terestingly, the leakage captured in the 2"%-moment corre-
sponds to the whole leakage available in the traces, as con-
firmed by mutual information analysis*, i.e. showing that
no other source of leakage is present in the traces. We re-
peated the same attacks by clocking the target device with
increasing clock frequencies. The results are illustrated in

4Estimated using histograms.
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Figure 6 (bottom) and show that the efficiency of 2"?-order
attacks increases with the clock frequency, confirming the
claims of [17] also in the EM domain.

1%t-Order Masking, PRNG On and Shuffling On.

The results of the analysis of the 1%t~ and 2"?-order uni-
variate leakage, when the shuffling countermeasure is on, is
reported in Figure 7. Interestingly, no univariate leakage can
be observed in any of the first four moments at the consid-
ered security level. Also, mutual information analysis reveals
no any other leakage source in the traces. It is worth noting
that shuffling the activation order of the shares is particu-
larly effective against side-channel collision attacks, as each
operation is independently shuffled, thus making collisions
much harder to match and detect in practice. However, it
must be also noted that the leakages are only hidden by the
shuffling countermeasures, thus some leakage is expected to
emerge either by increasing the number of measurements or
by using more sophisticated combined attacks. Nevertheless,
the univariate security is guaranteed by our experiments up
to 10,000,000 traces in a worst-case scenario analysis with
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fixed public points, thus providing a significant security im-
provement at negligible area costs.

2m1-Order Masking, PRNG On and Shuffling Off.
Finally, the results of the analysis of the 1%~ and 2"¢-
order univariate leakage, when the shuffling countermeasure
is off, for a 2"¢-order implementation is reported in Figure 9.
As for the previous case, it is not possible to observe any
leakage in the 1°¢ and 2"? order, but also no other leakage
is detected by either higher-moments (up to the fourth) nor
using mutual information, for the considered security level.

6. CONCLUSION

In this work, we provided new principles for the selec-
tion of more efficient addition chains, which lead to faster
and more compact S-box implementations. We proposed a
lightweight shuffling countermeasure, which randomly per-
mutes the activation order of the shares within polynomial
masking schemes, and that effectively increases their uni-
variate security in practice. Finally, we provided the design
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(middle), Mutual Information (bottom), 10,000,000 Traces.

and synthesis results of a more efficient, shuffled and higher-
order polynomial masked AES S-box, showing that univari-
ate security up to 10,000,000 traces can be achieved either
by a shuffled 1%*-order implementation, or by a 2"?-order
implementation, in a pessimistic worst-case scenario analy-
sis. In particular, our 1%t-order implementation requires 105
clock cycles and costs 10.2kGE, while our 2"%-order imple-
mentation requires 175 clock cycles and costs 33.4 kGE.
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Attacks (middle), Mutual Information (bottom), 10,000,000 Traces.

26



